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Conformational change of a helical polymer molecule induced by periodic modulation of the internal coordinates
around constant values of a uniform helix was studied by numerical calculation. We paid attention to the ‘spatial
resonance’ found by Yamamotoet al., who carried out analytical calculation to a linear approximation
(Yamamoto, M., Kasai, K. and Hikichi, K.,J. Macromol. Sci. (Phys.), 1967,B1(2), 213). The spatial resonance
means that when the wavelength of the modulation is equal to one turn of the helix, a finite amplitude of the
modulation of the internal coordinates leads to divergence of the fluctuation in the external coordinates. We found
that the molecular conformation in the spatial resonance induced by the modulation of the internal rotational angle or
the bond angle is not a straight helix but is deformed into a ring-shaped helix, which we call ‘ringed-coil’
conformation. On the other hand, the modulation of the bond length does not give rise to the spatial resonance. When
both the internal rotational angle and the bond angle are modulated in a proper way the molecular conformation
remains as a straight helix, but the atomic positions are displaced from those of the uniform helix. A few possible
applications of the concept of the spatial resonance are proposed.q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

There are two types of coordinate systems used in the study
of the molecular conformation and the molecular motion of
helical polymer molecules; one is the external coordinate
system composed of the helix radius, the rotational angle
between the neighbouring monomers around the helix axis,
and the interval of the neighbouring monomers along the
helix axis, and the other is the internal coordinate system
composed of the chemical bond length, the bond angle and
the internal rotational angle. The external coordinate system
is suitable to express the intermolecular interaction
potential. On the other hand the internal coordinate system
is suitable to express the intramolecular interaction
potential. Therefore, the interrelationship between the
external and internal coordinates has to be considered to
study the molecular conformation and the molecular
motion.

Yamamoto and co-workers studied the thermal motion
in the crystal using the internal coordinate system1–3.
According to Shimanouchi and Mizushima4 and Miya-
zawa5, Yamamotoet al. deduced equations applicable to a
non-uniform helix connecting the internal and external
coordinates to a linear approximation. Their approximation
was based on the assumption that the thermal motion
deforms the molecular conformation from the uniform helix
but keeps the straight shape of the molecule. Using these
equations, they calculated the thermal fluctuation of the
external coordinates accompanying thermal motion of the
internal coordinates, which can be expressed as

h(n, t) ¼ hþ Dh cos
2p(n¹ n0)

l
¹qt þ a

� �
: (1)

In equation (1)h represents one of the internal coordinates:
the bond lengthr, the bond anglef or the internal rotational
angle t. The atoms are numbered successively along the
helix. r(n,t), f(n,t) and tðn; tÞ are, respectively, the length
of the chemical bond between thenth and (n þ 1)th atoms,
which is called thenth bond hereafter, the bond angle
between the (n ¹ 1)th andnth bonds and the rotational
angle around thenth bond at a timet. h, Dh, l, q and a
are, respectively, the time average ofh, amplitude, wave-
length, angluar frequency and initial phase of the modula-
tion. The wavelength is expressed in terms of the number of
bonds; n0 is a constant. Yamamotoet al. obtained an
interesting result in that, whenl is equal to one turn of
the helix, the fluctuation of the external coordinates
diverges; they called this divergence ‘spatial resonance’.

We carried out numerical calculation of the molecular
conformation determined by the internal coordinates given
by equation (1) to overcome the limitation of Yamamoto’s
linear approximation. As reported in a previous paper6, we
found that modulation of the internal rotational angle to
satisfy the spatial resonance condition leads to drastic
change in the molecular conformation, from a straight helix
to a ring-shaped helix. In this work the molecular
conformation induced by the modulation of the bond
angle and the bond length, as well as the internal rotational
angle, is calculated in detail. The results are compared with
the results from the analytical calculation by Yamamotoet al.

MODEL AND CALCULATION METHOD

We consider a helical molecule composed of one kind of
atom. In this study, deformation from the uniform 18/5 helix
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is calculated. Atomic positions are calculated along the
following procedures. We consider the molecular con-
formation at a timet ¼ t0, assuming that¹qt0 þ a ¼ 0 in
equation (1), except when studying phase dependence.
Initially the positions of the zeroth, first and second atoms
are calculated according to Shimanouchi, Mizushima and
Miyazawa equations4,5 assuming thatr(0,t0) ¼ r(1,t0) ¼ r,
f(1,t0) ¼ f and the rotational angle between the
neighbouring atoms around the helix axis is equal to the
value of the uniform 18/5 helix.r andf are set to be unity
and the tetrahedral angle, respectively. The helix axis is
assumed to be identical with thez axis of a Cartesian
coordinate system. The first atom is put on thex axis. We
consider a planeP containing the above three atoms. The
zeroth and second atoms are moved on the planeP
symmetrically for thex axis to makef(1,t0) equal to the
modulated value determined by equation (1). The value of
n0 in equation (1) is set to be 1 to calculatef(1,t0). For the
calculation ofr andt the valuen0 is set to be 0.5. With these
values of n0 the modulated internal coordinates are
symmetric for the first atom when¹qt0 þ a ¼ 0. Then
r(0,t0) andr(1,t0) are adjusted to the modulated values. The
position for thenth atom (n $ 3) is calculated referring to
the positions of the (n ¹ 3)th, (n ¹ 2)th and (n ¹ 1)th atoms
using the next equation.

un ¼ un¹ 1 þ r(n¹ 1){ ¹ cosf(n¹ 1)ea

þ sinf(n¹ 1) sin t(n¹ 2)eb

¹ sinf(n¹ 1) cost(n¹ 2)ec} ð2Þ

whereun is the vector designating the position of thenth
atom. Geometry of the successive four atoms is shown in
Figure 1. Thea andb directions are, respectively, parallel to
the (n ¹ 2)th bond and perpendicular to the plane deter-
mined by the (n ¹ 3)th, (n ¹ 2)th and (n ¹ 1)th atoms.ea,
eb andec are unit vectors along thea, b and
c axes, respectively. These three unit vectors are given by
the following equations.

ea ¼
rn¹ 2

lrn¹ 2l
(3)

eb ¼
rn¹ 3 3 rn¹ 2

lrn¹ 3 3 rn¹ 2l
(4)

ec ¼ ea 3 eb (5)

wherer n is the vector from thenth atom to the (n þ 1)th
atom, that is,

rn ¼ unþ 1 ¹ un: (6)

The value oft, which is necessary to calculate the value of
t(n ¹ 2) in equation (2), is calculated from Shimanouchi,
Mizushima and Miyazawa equations4,5.

RESULTS

Wavelength dependence
Molecular conformation is calculated for various wave-

lengths of modulation. The molecular conformations
induced by the modulation of the bond angle and the bond
length are shown inFigures 2 and 3, respectively. The
molecular conformations induced by the modulation of the
internal rotational angle are almost the same with those
shown inFigures 2 and 3as reported in a previous paper6.
Figure 2 show the projection to thexy plane of 72 atoms
(from the first to the 72nd atom). After the atomic positions
are calculated according to the method explained in the
previous section, the whole molecule is rotated around thex
axis to move the vector from the first atom to the 73rd atom
onto theyxzplane. The solid circles and the lines show the
atoms and the chemical bonds, respectively. The wave-
length is (a) 18, (b) 18/2, (c) 18/3, (d) 18/4, (e) 18/5, (f) 18/6,
(g) 18/7, (h) 18/8, (i) 18/9; (i) is shown in onlyFigure 2. It
should be remembered that the value of the internal
coordinate determined by equation (1) with each of the
above wavelength values has a periodicity of 18 bonds. The
amplitude of the modulation isDf ¼ 0.9438 in Figure 2and
Dr ¼ 0.0165 in Figure 3. The average of the relative
displacement between thenth and (n þ 3)th atoms
corresponding to these values ofDf andDr is almost the
same as that corresponding toDt ¼ 18 used in Ref.6.

It is apparent inFigure 2ethat the molecular conforma-
tion is significantly deformed from the uniform helix when
l ¼ 18/5. Whenl Þ 18/5 there are 18 solid circles. This
means that the molecule has the translational symmetry of
the uniform 18/5 helix. InFigure 2dandFigure 2f the solid
circles are notably displaced from the positions of the
uniform helix. This suggests that the deformation from the
uniform helix becomes significant as the wavelength
approaches to 18/5. On the other hand, inFigure 3 all
molecules have the translational symmetry of the uniform
18/5 helix.

Positions up to the 1000th atom are calculated to
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Figure 1 Geometry of the successive four atoms with the structural parameters used in the calculation



investigate the conformation induced by the modulation of
the bond angle closely aroundl ¼ 18/5. The amplitude is
the same with the above calculation. Results are shown in
Figures 4 and 5. Figures 4 and 5show, respectively, the
projections to theyz and xz planes of the molecule. The
conformation with the modulation of the internal rotational
angle, which was already reported in a previous paper8, is
almost the same as those shown inFigures 4 and 5. Atomic
positions are not corrected by rotation around thex axis. The
molecule is expressed by successive lines connecting every
18 atoms or open circles expressing every 18 atoms. The
straight lines (a) in each figure show the uniform helix. The
wavelength is (b) 18/4.9, (c) 18/4.95, (d) 18/4.995, (f) 18/5,
(g) 18/5.005, (h) 18/5.01, (i) 18/5.05 and (j) 5.1.

Figures 4 and 5show that significant deformation from
the uniform helix occurs in a narrow range of the
wavelength aroundl ¼ 18/5. At a wavelength close to
18/5 the helix axis is deformed from a straight line into a
helix; the molecular conformation is a coiled-coil. As the
wavelength approaches to the 18/5 the radius of the helix
becomes larger and the helix pitch of the helix axis becomes
smaller. Whenl ¼ 18/5 the helix axis becomes a ring. The
conformation atl ¼ 18/5 will be called ‘ringed-coil’
conformation hereafter.

It should be noted thatl ¼ 18/5 is the wavelength equal
to one turn of the helix. Conformational change starting
from a uniform 19/6 helix was calculated similarly to the
case of 18/5 helix, and the ringed-coil conformation was
found at l ¼ 19/6. This shows that the ringed-coil
conformation is not due to the value of 18 or 5. Thus it is
confirmed that the ringed-coil conformation occurred when

the wavelength was equal to one turn of the helix. This
means that the divergence of the external coordinates found
by Yamamoto and co-workers1–3 corresponds to the
deformation into the ringed-coil conformation.

Conformational change due to the modulation of the
internal rotational angle with a wavelength equal to a
multiple of 18/5 is calculated. Two cases such asl ¼ 2 3
(18/5) andl ¼ 3 3 (18/5) are investigated and the ringed-
coil conformation is found in both cases. However, the
singularity of these two cases is much weaker than the
case ofl ¼ 18/5. The amplitude of the modulation is set to
be 58. The radius of the ring atl ¼ 2 3 (18/5) andl ¼ 3 3
(18/5) is, respectively, 650 and 23 104 while it is 100 when
l ¼ 18/5 with an amplitude of 18. The singularity at the
wavelength equal to multiple turns of the helix was not
pointed out be Yamamoto and co-workers1–3. The new
singularity will be obtained by calculation in higher order
approximation.

The mode of the modulation with a wavelength equal to
one turn of the helix was called ‘E(v) mode’ by Yamamotoet
al.1 accounting for the symmetry of the atomic displacement.
However, the symmetry is based on the assumption that the
deformed helix is still in a straight shape. This assumption is
not correct as shown inFigures 4 and 5. Therefore the term
‘E(v) mode’ is not proper in this case.

Amplitude and phase dependence
Dependence of the conformational change on the

amplitude and the phase is calculated. The wavelength is
fixed to be 18/5. The amplitude investigated is 1–58 at 18
intervals forDt, and 1, 2, 3, 4 and 5 times 0.9438 for Df. The
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Figure 2 Projection to thexy plane of the deformed molecules composed of 72 atoms with the modulation of the bond angle. The wavelength of the
modulation is (a) 18, (b) 18/2, (c) 18/3, (d) 18/4, (e) 18/5, (f ) 18/6, (g) 18/7, (h) 18/8 and (i) 18/9. The solid circles and the lines show the atoms and the
chemical bonds, respectively



calculated radius of the ring is given inTable 1. The first
column shows the amplitude of the modulation. The second
and third columns show the radius of the ring due to the
modulation oft andf, respectively. The radius of the ring is
almost linear to the inverse of the amplitude within the
amplitude range investigated.

The phase¹qt þ a in equation (1) is changed from 0 to
3158 at 458 intervals. Phase dependence in the case of the

modulation of the internal rotational angle is the same as
that of the bond angle. As the phase¹qt þ a becomes larger
the ringed-coil is rotated clockwise around thez axis
stepwise at the step of 458. This result is as expected because
the phase of the modulation varies by 3608 during one turn
of the helix.

Complex mode
As mentioned above, the conformational change induced

by the modulation of the internal rotational angle is similar
to that of the bond angle. It is expected that a proper
superposition of the modulation of the bond angle on the
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Figure 3 Projection to thexy plane of the deformed molecules composed of 72 atoms with the modulation of the bond length. The wavelength of the
modulation is (a) 18, (b) 18/2, (c) 18/3, (d) 18/4, (e) 18/5, (f) 18/6, (g) 18/7 and (h) 18/8. The solid circles and the lines show the atoms and the chemical bonds,
respectively

Figure 5 The same molecules with those inFigure 4projected to thexz
planeFigure 4 Projection to theyz plane of the molecules composed of 1000

atoms. The molecule is expressed by successive lines connecting every 18
atoms ((a)–(e) and (g)–(j)) or open circles expressing every 18 atoms (f).
The straight line (a) is the uniform helix. (b)–(j) show the deformed
molecules by modulation with a wavelength of (b) 18/4.9, (c) 18/4.95, (d)
18/4.99, (e) 18/4.995, (f) 18/5, (g) 18/5.005, (h) 18/5.01, (i) 18/5.05 and (j) 5



modulation of the internal rotational angle will lead to a
straight helix because of compensation for tendency to
curve the helix axis. Such a type of complex mode is
investiagted by a trial and error method. The wavelength
andDt are set to be 18/5 and 18, respectively. ThenDf is
changed until the 73rd atom comes to the position right
above the first atom. The phase¹qt þ a of t andf are fixed
to be 0 and 1808, respectively. A similar calculation is
carried out forDt ¼ 2, 3, 4 and 58. The complex mode
which keeps the straight shape of the helix is found for each
value ofDt. Values ofDt andDf are given inTable 2with
the ratio ofDf to Dt. The values ofDf/Dt agree very well
with each other.Figure 6shows the displacement of atoms
from the position of the uniform 18/5 helix.Dt andDf are
set to be 58 and 53 0.9368, respectively. InFigure 6dr, dv
and dzare displacements in the radial direction of the helix,
in the rotational direction around the helix axis, and in thez
direction, respectively.Figure 7 shows a projection of the
atomic positions to thexy plane. The solid and open circles
are the atomic positions of the uniform helix and the same
helix with Figure 6, respectively.

DISCUSSION

The work by Yamamotoet al. was carried out to explain the
thermal motion of the rigid helix around the helix axis
observed by Chibaet al. in the crystal of polyoxymethyl-
ene7. They suggested that thermal motion satisfying the
condition of the spatial resonance is the motion of the rigid
helix around the helix axis. Since the molecular conforma-
tion in the polyoxymethylene crystal is taken to be an 18/5
helix neglecting the difference between the carbon and
oxygen atoms, the results of our calculation can be applied
to this case. The thermal motion in the crystal must keep the
straight shape of the helix. As shown inTable 1the radius of
the ring of the ringed-coil conformation is about 100 times
the bond length when the amplitude of the modulation is
only 18. The typical thickness of the polymer crystal is
similar to the radius of the ring. The spatial resonance mode
of only the internal rotational angle or the bond angle give
rise to too large curvature of the helix.

The spatial resonance mode which keeps the straight
shape of the helix is the complex mode of the internal

rotational angle and the bond angle. However, it should be
noted that the atomic displacement due to the complex mode
is not confined in a plane parallel to thexy plane, as shown
in Figure 6, and the projection of the atomic displacement is
not rotation around the helix axis, as shown inFigure 7.
Therefore the spatial resonance of the complex mode does
not correspond to the thermal motion of the rigid helix
around the helix axis in the polyoxymethylene crystal.
Molecular motion expressed by a soliton model8 is another
possibility to explain the molecular motion around the helix
axis.

It is found that only small modulation of the internal
rotational angle or the bond angle around the constant value
of a uniform helix can lead to a significant change of the
whole conformation. The deformed conformation does not
always have the translational symmetry of the original
uniform helix if the modulation itself has the periodicity of
the original uniform helix. The ringed-coil conformation
occurs when the wavelength is equal to one turn of the helix
or its multiple. It should be noted that one turn of the helix is
not a length equal to a multiple of the interval of
neighbouring atoms. The geometric feature of a continuous
helix is essential for the occurrence of the ringed-coil
conformation. Yamamotoet al.1 pointed out that the spatial
resonance occurs due to accumulation of deviation from
the uniform helix because the period of the deviation is the
same as the turning period of the helix. Occurrence of the
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Table 1 Amplitude of the modulation and radius of the ring of the ringed-
coil conformation

Amplitude
(8)a

Modulation
of t

Modulation
of f

D0 99.9 99.2
2 3 D0 49.9 49.6
3 3 D0 33.2 33.0
4 3 D0 24.9 24.7
5 3 D0 19.9 19.7
a D0 ¼ 1 for Dt andD0 ¼ 0.943 forDf

Table 2 Amplitude of the complex mode of the internal rotational angle
and the bond angle with their ratio

Dr (8) Df (8)
Df/D-
t

1 0.936 0.936
2 1.872 0.936
3 2.808 0.936
4 3.744 0.936
5 4.679 0.936

Figure 6 The displacement of atoms due to the modulation of the
complex mode from the position of the uniform helix. dr, dv and dz are
displacements in the radial direction of the helix, in the rotational direction
around the helix axis, and in thez direction, respectively

Figure 7 Projection to thexyplane of the atomic positions of the uniform
helix (solid circles) and the same molecule withFigure 6 (open circles)



spatial resonance when the wavelength is equal to a multiple
of the helix turn means that the accumulation effect is not
linear to the modulation.

In the linear approximation studied by Yamamotoet al.
the external coordinates were assumed to change sinusoidally,
accompanying the sinusoidal modulation of the internal
coordinates. According to their analytical calculation the
amplitude of the sinusoidal change in the external
coordinates diverges as follows. The following equations
are shown in condensed forms to show the essential parts
responsible for the divergence; the full forms are given in
Ref. 1.

Modulation oft:

Dp¼ f1(k)(cosv ¹ cosk)¹ 2Dt (7)

Dv ¼ f2(k)(cosv ¹ cosk)¹ 2Dt (8)

Dd¼ f3(k)(cosv ¹ cosk)¹ 1Dt (9)

Modulation off:

Dp¼ (f4(k)(cosv ¹ cosk)¹ 2 þ f5(k)(cosv ¹ cosk)¹ 1)Df

(10)

Dv ¼ (f6(k)(cosv ¹ cosk)¹ 2 þ f7(k)(cosv ¹ cosk)¹ 1)Df

(11)

Dd¼ f8(k)(cosv ¹ cosk)¹ 1Df (12)

Modulation ofr:

Dp¼ f9(k)(cosv ¹ cosk)¹ 1Dr (13)

Dv ¼ f10(k)(cosv ¹ cosk)¹ 1Dr (14)

Dd¼ f11Dr (15)

In equations (7)–(15),Dp, Df andDd are the amplitude of
the modulation of, respectively, the helix radius, the
rotational angle between the neighbouring atoms around
the helix axis and the interval of the neighbouring atoms
along the helix axis.v andk are, respectively, the average
value of the rotational angle between the neighbouring
atoms around the helix axis and the wave number of the
modulation. In our present calculationv ¼ 2p 3 5/18.
The ringed-coil conformation occurs whenk ¼ 2p 3 5/18.
fm(k) (m ¼ 1,…,10) is a continuous function ofk andf11 is a
constant independent ofk.

Equation (13) and equation (14) show that the external
coordinates diverge due to the modulation ofr as well ast
and f. This is inconsistent with the results of our
calculation. Paying attention to the order of divergence,
however, it can be seen that the ringed-coil conformation
occurs only whenDp andDv diverge in the second order as
(cosv ¹ cosk)¹2. It has not yet been explained why the first
order divergence is not important for the deformation of the
molecule.

The constant value ofDf/Dt shown inTable 2can be
calculated assuming that the sum of the terms of the second

order divergence in equation (7) and equation (10) is equal
to zero. The obtained value is 0.936 in very good agreement
with the values inTable 2. The same value can be obtained
from equation (8) and equation (11). This is consistent with
the above consideration that only the second order
divergence is important for the drastic conformational
change.

A few possible applications of the concept of the spatial
resonance are mentioned below.Table 1 shows that the
radius of the ring of the ringed-coil conformation is less than
20 times bond length when the amplitude is 58. This
suggests the possibility of a rather sharp turn of the molecule
in solution or melt without mixing of thetransandgauche
conformations. Such a sharp turn will be able to occur in a
hard chain in which conversion from thetrans to gaucheor
vice versa is difficult.

The spatial resonance may reduce the magnitude of the
force constant relevant to the change in the shape of the
whole molecule. Large deformation of the whole molecule
occurs with only small change of the internal coordinates.
The increase of the internal energy due to the deformation
will be small because the internal energy mainly depends on
the local conformation determined by the internal coordi-
nates. Large deformation with small increase of the internal
energy means that the force constant is small.

The small force constant suggests that the molecular
motion satisfying the condition of the spatial resonance
mode will have a large amplitude and a small frequency. it
should be noted that experimental results and computer
simulations about various protein molecules showed that the
relative motion between the rigid secondary structures
connected together by a flexible part is very slow with a
large amplitude9. Such a mode of molecular motion may
correspond to the molecular motion satisfying the condition
of spatial resonance.
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